

Security in WEB Applications, Definitions, Risks and Tools

Alejandra Santoyo-Sanchez1, RediCórdova-Arbieto2,
and Carlos De Jesús-Velásquez3

1Department of Computing Science, Universidad de Guadalajara–CUCEI, Guadalajara, Jalisco, México
2 Facultad de Ingeniería de Sistemas e Informática, Universidad Nacional Mayor de San Marcos–UNMSM, Lima, Perú

3Compatibility Validation, Intel Tecnología de México S.A., Tlaquepaque, Jalisco, México

Phone (33) 1378 5900 E-mail: alejandra.santoyo@cucei.udg.mx

Abstract. Security in WEB applications has become a major concern for the scien-
tific and business communities today. An increasing amount of money is being spent
for handling information security. . Therefore, giving the proper importance of han-
dling information security, the paper focuses on: definitions of software security,
vulnerabilities and risks, dealing with various threats and vulnerabilities, the risk
ranking created by OWASP (Open Web Application Security Project) and describes
different tools that can be used for security within a Web application using a test,
some of them are Zed Attack Proxy (ZAP), BeEF (The Browser Exploitation
Framework), Burp Suite, PeStudio, Xenotix XSS Exploit Framework, Lynis, Recon-
ng, Suricata, WPScan, and O-Saft (OWASP SSL Advanced Forensic Tool).

Keywords: WEB Application, Reliability, Risk, Testing, Security Standard.

1 Introduction

Meanwhile the world is more connected, the need for security in the procedures used to
share information become more important. Since it has generated an evolution of infor-
mation systems using the Internet. According to [1-4] information systems are a mecha-
nism that helps to collect, store, organize and disseminate the data contained therein; its
purpose is to help users to get some kind of value of information that is in the system,
regardless of the type of information that is stored and the type of desired value. The in-
fluence of the Internet in all processes and communication stages of current media covers
the registration, handling, storage and distribution of information, whether the form of
text, still and moving images, sound, etc.

 From the perspective of software developers, the need for users to access information
from anywhere on any device, they are frequently asked to fill registration forms, by en-
tering the information required to specific tasks to operate. However, registration can be
done by non-automated software and user data can be compromised or corrupted.

pp. 31-41; rec. 2014-05-16; acc. 2014-07-07 Research in Computing Science 78 (2014)31

It is crucial for WEB applications to consider a defense system against various types of
threats and attacks. Among the first lines of defense are the CAPTCHA images [5]. Its
function is to identify if the user of the WEB application is a human user/or automated
software designed to gain access to the WEB application. This software is named as Opti-
cal Character Recognition (OCR).

In order to guarantee safety aspects in WEB applications involve performing a variety
of tests in a complex set of possible scenarios. Therefore, it is difficult to remove all secu-
rity flaws and performance during the development of WEB applications.

According to [6], software vulnerabilities can be grouped in three categories: the de-
sign, development and implementation, and operation. Unfortunately, in the practice,
analysts and designers of WEB applications do not specify security requirements, and
often do not provide assessment for vulnerabilities in their design; where most security
risks occur during the implementation stage [7]. So, this paper focuses on analyzing the
characteristics of the most common risks defined by OWASP during the implementation
phase, and the use of security tools to help in this complex task.

The paper is organized as follows; the second section contains the basics definitions
about risks on WEB applications, security, vulnerability, and threats. It also shows the list
of the 10 most common vulnerabilities according to OWASP taxonomy [7], and the guide
vulnerabilities proposed in [8]. The third section presents the analysis of existing software
tools under GNU-GPL license for the risks described in section two, which are based on
questionnaires given in the guidance document in [8]; through descriptive pictures. The
fourth section illustrates the use of the tools discussed in the implementation of a case
study. Finally, conclusions and future work are presented in the fifth section.

2 Background

Definition 2.1. A WEB application consists of a set of WEB pages and components that
interact to form a system running using WEB server (s), network (s), Hyper Text
Transport Protocol (HTTP), and a browser, where its state changes according to the in-
formation users provide or request [8-9].

The issue of proper handling information security has been raised in various working
groups around the world, such as IEEE, ISO and NIST. As result from those working
groups, here some definitions based on the ISO/IEC17799 standard are presented[9] to
provide adequate support for reading topics.
Definition 2.2. Information security is the preservation of confidentiality, integrity and
availability of information, where: confidentiality is defined as ensuring that information
is accessible only to those who are authorized to access. Integrity is defined as safeguard-
ing the accuracy and completeness of information and processing methods. And availabil-
ity is defined as ensuring that authorized users have access to information and associated
assets when required.

Alejandra Santoyo Sanchez, Redi Córdova Arbieto and Carlos De Jesus Velásquez

Research in Computing Science 78 (2014) 32

Moreover, from the viewpoint of software developers, the information security in-
volves a set of methodologies, practices and procedures that seek to protect information as
a valuable asset and thereby reduce threats and risks to ensure that resources system to be
used the way it was decided (namely security). Security cannot be a product, it is a pro-
cess, and it is an activity that attempts to reduce risks. In order to clarify the terms used
herein, the definitions "threat", "vulnerability" and "risk" adapted from [9-12] are listed
next.
Definition 2.3. Threat is any circumstance or event with the potential to adversely impact
a system through unauthorized access, destruction, disclosure and/or data modification or
denial of service.
Definition 2.4. Vulnerability is a flaw or weakness in system’s design, implementation, or
operation and management that could be exploited to violate the system’s security policy.
Definition 2.5. Risk is a function between the possibility of the occurrence of a potentially
disastrous event (namely threat) and the inability to smoothly absorb the effects of the
event (namely vulnerability).

In [8] a set of guidelines based on standards: ISO 9126:1991, IEEE 1233, IEEE 6190,
IEEE 830, ISO / IEC 9646-1 is proposed (see references [10-14]). The guide is based on
questionnaires, which indicate at each stage of development of a WEB application, what
security issues are found in the application during each stage. The guide indicates which
subjects have been validated. Some questions contained in the guide are: Is there a securi-
ty protocol to avoid outside attacks and intrusions from hackers? Do you avoid program
names and directories being seen,? Does it protect the integrity of their programs and
data? Are the services offered are made via secure transaction channels?

Just to mention some questions you can give a general idea of the aspects to be taken
into account for attaining security within a WEB application. During the test phase, you
should check the requirements, analyze the design and perform code review. In case of
errors or new requirements in WEB development, requires to determine the cost, time and
impact of a change in the existing product. Also, to document the changes and verify the
consistency of the changes. Some questions in this phase are: Which threats exist? What
problems are caused? Where are they? Does the occurrence of a threat can trigger other?
How often were presented threats? What was the damage? What elements of the applica-
tion are most exposed? What tools are available to us to measure vulnerabilities? What
capacity has to continuously assess threats?

These questions reflect, and it becomes more clear, that efforts for eradicate or treat-
ment of threats don’t need to be limited, but also is required a safety plan has to be started
during all the development cycle of an application from initial design to maintenance
phase. The guide give a good basis to implement security in WEB applications, in particu-
lar, this work focuses on the available tools to complement the security process.

The OWASP in [15] has released an updated ranking for the most critical risks affect-
ing the WEB applications. This ranking, comes from the consensus and debate among
experts [7], which is described in Tables 1 and 2. Moreover, in order to assess risks, three

Security in WEB Applications, Definitions, Risks and Tools

Research in Computing Science 78 (2014)33

steps are defined: (1) Assessment of the threat, (2) Analysis of vulnerability, and (3) The
risk estimate as a result of linking the two parameters above. A template that can help you
document the assessment is presented in Table 3.

 The intrusion is the most difficult kind of threats, and there are more issues to consider
and deal with. Attackers have a range of capabilities and motivations, where threats agents
can arise from many groups of people. These potential attackers will also have a wide
range of capabilities, resources, organizational support, and motivations. The following is
a brief list of potential attackers/threats agents.
 Hackers, who have computer resources, knowledge, dedication and find it funny and

challenging.
 Employees, who have inside knowledge, easy access, and do it on/without purpose.
 Insiders, contractors, and competitors, who have access to confidential infor-

mation, and possess knowledge of operations and default passwords.
 Traders, who have computer skills and could financially gain.
 Foreign governments, which have resources (system expertise, computers, cryptog-

raphers, money), intelligence agencies, and an interest in military or cause economic
damage.

 Organized crime, extremist groups, and terrorist, who have dedication, computer
skills, to financially gain and harm groups they oppose.

 Alliances of the above, with a combination of reasons.
Based on the above’ s descriptions (today's and tomorrow’s situations), the following

threats may be evident for WEB applications:
 External intrusion by unauthorized access or by customers who do more that they

are allowed to do. Also, an intruder may interfere with the system users, such that the
user cannot access to the system and use the service as they expected (denial of ser-
vice).

 Internal intrusion by employees, it could be with or without the intention to do
harm.

Furthermore, “Intel’s McAfee WEB Protection” [16] considers the following threats to
WEB applications.
 Balancing risk and usability. Usability and security in WEB applications cannot be

necessarily mutually exclusive. Some measures taken to increase security often affect
usability. It is necessary to consider intruders as “users”, and to use security measures
to identify if the user who interacts with the application if it is or not and intruder.
For instance, the case of a user name and password used for registration that are ex-
pected by the procedures.

 Data tracking. The scope is to establish the “origin point” of the information (or
data). The idea is based on a point-to-point view of data transfer and communication
security; in the WEB application context, a security scheme needs to provide the ca-
pability and means to control access to the data, and to control its use. Thus, it is pos-
sible determinate if the request of a user are or are not validate.

Alejandra Santoyo Sanchez, Redi Córdova Arbieto and Carlos De Jesus Velásquez

Research in Computing Science 78 (2014) 34

 Filter Check. Through this process, data is validated. If to ensure that data are
properly filtered to inside, it is possible “to eliminate” or “minimize” the risk of con-
tamination or malicious data, which are used to cause undesired operation in the ap-
plication (for example App Store prevent the error).

Table 1. OWASP 2013 Top 10 of Security WEB applications risk, first part.

RISK DESCRIPTION

1. Injection

Injection flaws, such as SQL, OS, and LDAP injection occur when

untrusted data is sent to an interpreter as part of a command or query.

The attacker’s hostile data can trick the interpreter into executing

unintended commands or accessing data without proper authorization.

2. Broken Au-

thentication and

Session Management

Application functions related to authentication and session manage-

ment are often not implemented correctly, allowing attackers to com-

promise passwords, keys, or session tokens, or to exploit other imple-

mentation flaws to assume other users’ identities.

3. Cross Site

Scripting (XSS)

XSS flaws occur whenever an application takes untrusted data and

sends it to a web browser without proper validation or escaping. XSS

allows attackers to execute scripts in the victim’s browser which can

hijack user sessions, deface web sites, or redirect the user to malicious

sites.

4. Insecure Direct

Object References

A direct object reference occurs when a developer exposes a reference

to an internal implementation object, such as a file, directory, or data-

base key. Without an access control check or other protection, attackers

can manipulate these references to access unauthorized data.

5. Security Mis-

configuration

Good security requires having a secure configuration defined and

deployed for the application, frameworks, application server, web

server, database server, and platform. Secure settings should be de-

fined, implemented, and maintained, as defaults are often insecure.

Additionally, software should be kept up to date.

6. Sensitive Data

Exposure

Many web applications do not properly protect sensitive data, such as

credit cards, tax IDs, and authentication credentials. Attackers may

steal or modify such weakly protected data to conduct credit card fraud,

identity theft, or other crimes. Sensitive data deserves extra protection

such as encryption at rest or in transit, as well as special precautions

when exchanged with the browser.

7. Missing Func-

tion Level Access

Control

Most web applications verify function level access rights before mak-

ing that functionality visible in the UI. However, applications need to

perform the same access control checks on the server when each func-

tion is accessed. If requests are not verified, attackers will be able to

forge requests in order to access functionality without proper authoriza-

tion.

Security in WEB Applications, Definitions, Risks and Tools

Research in Computing Science 78 (2014)35

8. Cross Site Re-

quest Forgery

(CSRF)

A CSRF attack forces a logged-on victim’s browser to send a forged

HTTP request, including the victim’s session cookie and any other

automatically included authentication information, to a vulnerable web

application. This allows the attacker to force the victim’s browser to

generate requests the vulnerable application thinks are legitimate re-

quests from the victim.

Table 2. OWASP 2013 Top 10 of Security WEB application risk, second part.

RISK DESCRIPTION

9. Using Compo-

nents with Known

Vulnerabilities

Components, such as libraries, frameworks, and other software

modules, almost always run with full privileges. If a vulnerable com-

ponent is exploited, such an attack can facilitate serious data loss or

server takeover. Applications using components with known vulnera-

bilities may undermine application defenses and enable a range of

possible attacks and impacts.

10. Invalidated

Redirects and For-

wards

Web applications frequently redirect and forward users to other

pages and websites, and use untrusted data to determine the destination

pages. Without proper validation, attackers can redirect victims to

phishing or malware sites, or use forwards to access unauthorized

pages.

Table 3. Risk Evaluation Template

Threat Agent
Attack

Vectors

Prevalence of

Weaknesses

Defectivity

weaknesses

Technical

impact

Business

Impact

Application-

specific

Easy Diffused Easy Severe Specific by

Application /

Business

Average Common Average Moderate

Hard Uncommon Hard Less

 Escape exits. It is the process of verifying if escape strings were properly implement-
ed and its counterpart to encode/decode special characters. So, its original meaning is
preserved.

3 Tools for Security Testing

The following list of tools for security testing, which has analyzed in this work (see refer-
ences [17-26]).
 OWASP Zed Attack Proxy (ZAP) is an easy to use integrated penetration testing

tool for finding vulnerabilities in WEB applications. It is designed to be used by peo-
ple with a wide range of security experience and is highly recommended for develop-
ers and functional testers who are new to penetration testing. ZAP provides automat-

Alejandra Santoyo Sanchez, Redi Córdova Arbieto and Carlos De Jesus Velásquez

Research in Computing Science 78 (2014) 36

ed scanners as well as a set of tools that allow you to find security vulnerabilities
manually.

 BeEF (The Browser Exploitation Framework) is a penetration testing tool that
focuses on the WEB browser. It allows the professional penetration tester to assess
the actual security posture of a target environment by using client-side attack vectors.

 Burp Suite is an integrated platform that combine advanced manual techniques with
automated tools, some of its components are: an intercepting Proxy, an application-
aware Spider, an advanced WEB application Scanner, an Intruder tool, and a Se-
quencer tool.

 PEStudio is a tool for analyzing unknown and suspicious executable files. The goal
of PEStudio is to detect malicious behavior, provide indicators and score the trust for
the executable being analyzed. Since the executable file being analyzed is never start-
ed, it is possible inspect any unknown or malicious executable with no risk. \

 OWASP Xenotix XSS Exploit Framework is an advanced XSS vulnerability detec-
tion and exploitation framework. It provides Zero False Positive scan results with its
unique Triple Browser Engine (Trident, WebKit, and Gecko) embedded scanner. It
has more of 1500 different Payloads for effective XSS vulnerability detection and
WAF Bypass.

 Lynis is an open source security auditing tool. Primary goal is to help users with au-
diting and hardening of UNIX and Linux based systems. The software is very flexible
and runs on almost every UNIX based system (including Mac). It includes searching
for installed software and determines possible configuration flaws.

 Recon-ng is a full-featured WEB Reconnaissance framework written in Python. It is
designed exclusively for web-based open source reconnaissance.

 Suricata is a high performance Network IDS, IPS and Network Security Monitoring
engine. Open Source and owned by a community run non-profit foundation, the Open
Information Security Foundation (OISF). This is highly scalable, i.e. it can run one
instance and it will balance the load of processing across every processor on a sensor
Suricata is configured to use.

 WPScan is a vulnerability scanner which checks the security of WordPress installa-
tions using a black box approach, which is made in Ruby.

 O-Saft (OWASP SSL Advanced Forensic Tool) is an easy to use tool to show in-
formation about SSL certificates and tests the SSL connection according to given list
of ciphers and various SSL configurations. It's designed to be used by penetration
testers, security auditors or server administrators. The idea is to show the important
information or the special checks with a simple call of the tool. However, it provides
a wide range of options so that it can be used for comprehensive and special checks
by experienced people.

From the description of tools for security testing above, table 4 achieve an overview from
the tools and their relations with top security risk defined by OWASP, where “X” inside
one box of the matrix indicates if the tool include the risk in its security test. However,

Security in WEB Applications, Definitions, Risks and Tools

Research in Computing Science 78 (2014)37

determining the necessary actions to eliminate hazards found, it is responsibility of test
developer, since the tools only indicate the vulnerability.

4 Results

By using the guidelines proposed in [8] and the tools mentioned in the third section, the
results illustrated in Figure 1 were obtained. Those were performed in 6 WEB massive use
applications available today.

During the analysis of each tool, an important factor in determining the number of risks
in the application is the number of breakpoints present. This refers to the ability of the
WEB application to perform an action if detects a threated from the attacker (attack test in
our analysis), forcing to take another route or scope (more tedious) to see if it can under-
mine the application, the more breakpoints found lower risks.

TABLE 4: ANALYSIS OF TOOLS VS TOPS SECURITY WEB RISK

TOOLS
RISK RANKING CREATED BY OWASP

PLATFORMS LICENCE
1 2 3 4 5 6 7 8 9 10

OWASP Zed Attack

Proxy (ZAP)
X X X X X X X X X X Windows/Unix GNU/UNIX

BeEF (The Browser

Exploitation Frame-

work)

X X X X X X X X

IExplorer

Google Chrome

Mozilla Firefox

Free Project

Burp Suite X X X X X
Windows/Unix/

Web Browser

Free Soft-

ware

PeStudio X X X X X X X X Windows Free Software

OWASP Xenotix

XSS Exploit Framework
 X X Windows / Unix GNU/UNIX

Lynis X X X X X X X X X X Unix/Linux GNU/UNIX

Recon-ng X X X X X

Windows GNU/UNIX

Suricata X X X X X X X X X X
Windows /

Web Browser

Open Source

GNU/UNIX

WPScan X X X

IExplorer

Google Chrome

Mozilla Firefox

Free Soft-

ware

O-Saft (OWASP

SSL Advanced Forensic

Tool)

X X X X Windows/Unix GNU/UNIX

Alejandra Santoyo Sanchez, Redi Córdova Arbieto and Carlos De Jesus Velásquez

Research in Computing Science 78 (2014) 38

Note also that each tool uses different methods to detect risks, so some despite having
few breakpoints have fewer vulnerabilities detected , since the application is not consid-
ered important to protect these techniques used by software , often because they know
they have nothing to lose in that way. It can be inferred that with reference to ZAP OWAS
tool is able to identify and mitigate as many risks.

5 Conclusions and Future Work

This paper contributes with an analysis of available tools that can be used for the identifi-
cation of security risks in WEB applications, based on the basic concepts of risks WEB
applications, security, vulnerabilities, and threats. We focused the analysis on 10 of the
most critical vulnerabilities according to the OWASP taxonomy and guidance given in
[8]. According to the results, OWAS ZAP was the security tool with better score reported.
Those results can be used to determine what the weaknesses points of the application are.
As a future work, we will propose a list of best practices during the development phase
that might help to reduce the number of risks found using the automated security set of
tools.

FIGURE 1: VULNERABILITY FOUND IN WEB APPLICATIONS.

Security in WEB Applications, Definitions, Risks and Tools

Research in Computing Science 78 (2014)39

6 Acknowledgements

This work was developed in the context of project and PAME-DUAL CO STUDENT

MOBILITY period January to July 2014, between the University of Guadalajara, Jalisco

Mexico and the National University of San Marcos, Lima, Peru.

7 References

1. Y. Deshpande, S. Hansen, “Web Engineering: Creating a Discipline among Disciplines”, Vol.8, No. 2,

pp.82 – 87, Ed. IEEE Multimedia, 2001.

2. D. Andrés Silva, B. Mercerat “Construyendo aplicaciones web con una metodología de diseño orientada a

objetos”, Magazine: Colombian Journal of Computation, Vol. 2, pp. 79 – 95, 2001.
3. Peter Norton, “Introducción a la computación”, sexta edición, Editorial Mc Graw Hill, ISBN 970-10-

5108-4, 2006.

4. Piattini Velthuis, Mario Gerardo, “Tecnología y diseño de Bases de Datos”, 1ª edición, Editorial
AlfaOmega, ISBN: 9701512685, 2007.

5. M. Dailey, C. Namprempre, “A text graphics character CAPTCHA for password authentication”, Proc. on
IEEE Region 10 Conference TENCON, 21-24, 2004, Print ISBN 0-7803-8560-8, Vol. 2. pp 45 – 48.

6. “Desarrollo Seguro de Aplicaciones”, en http://es.scribd.com/doc/54453491/6/Aplicaciones-inseguras,
May 2011.

7. OWASP Breakers community, "Web Application Penetration Testing", OWASP Testing Guide Table of

Contents, Ver. 4, Section 4-5, 2014.

8. A. Santoyo-Sanchez, C. De Jesús-Velásquez, L. I. Aguirre-Salas, “Security in Web applications”, Research

in Computing Science: Tendencias Tecnológicas en Computación, Vol. 66, 2013, pp. 161 – 174, ISSN

1870-4069, Ed. Instituto Politécnico Nacional, México D.F, México.

9. ISO/IEC 17799 (International Standard ISO/IEC 17799 Second edition 2005-06-15)

http:/www.iso17799software.com/

10. ISO 9126: 1991 (Software Engineering Product Quality part 1, 2, 3), http://www.iso.org

11. IEEE Std 1233-1998, IEEE Guide for Developing System Requirements Specifications, IEEE

STANDARDS, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=741940

12. IEEE Std 610.12, (Standard Glossary of Software Engineering Terminology) 1990, http:

www.swen.uwaterloo.ca/~bpekilis/public/softwareEnGlossary.pdf

13. IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements Specifications, IEEE,

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=720574

14. IEEE Standard 802.16 - IEEE Standard for Conformance to Part 2: Test Suite Structure and Test Purposes

(TSS&TP) for 10-66 GHz WirelessMAN-SC Air Interface,

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1273457

15. The Open Web Application Security Project, "The Ten Most Critical Web Application Security Risks", The

OWASP Foundation, 2013.

Alejandra Santoyo Sanchez, Redi Córdova Arbieto and Carlos De Jesus Velásquez

Research in Computing Science 78 (2014) 40

16. McAfee An Intel Company, "Web Security your way-SaaS. on-premises, or hybrid combination", in

http://www.mcafee.com/au/resources/data-sheets/ds-web-protection.pdf , MacAfee Web Protection, Data

Sheet,2012, Santa Clara, CA, USA, pp 1-2.

17. S. Sampath, V. Mihaylov, A. Souter, L. Pollock, “Composing a framework to automate testing of opera-

tional Web-based software”, in Proc. 20th IEEE International Conference on Software Maintenance

(ICSM), 2004, Chicago, IL, USA, pp. 104 – 113.

18. OWASP Zed Attack Proxy Project – OWASP, in https://www.owasp.org/index.php/

OWASP_Zed_Attack_Proxy_Project, consulted January/16/2014.

19. Burp Suite, in http://portswigger.net/burp/, consulted February/12/2014.

20. PESTudio, in http://www.winitor.com/, consulted march/01/2014.

21. OWASP Xenotix XSS \, https://www.owasp.org/index.php/ OWASP_Xenotix_XSS_Exploit_Framework,

consulted January/16/2014

22. Lynis, http://cisofy.com/lynis/, consulted February/16/2014.

23. Recon-ng, https://bitbucket.org/LaNMaSteR53/recon-ng, consulted April/01/2014.

24. Suricata, http://suricata-ids.org/, consulted may/08/2014.

25. WPScan, https://github.com/wpscanteam/wpscan, consulted may/08/2014.

26. O-Saft, https://www.owasp.org/index.php/O-Saft, consulted January/16/2014.

Security in WEB Applications, Definitions, Risks and Tools

Research in Computing Science 78 (2014)41

	Página en blanco
	Página en blanco

